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ABSTRACT 

This Report presents the fundamentals of two wind-tunnel dynamic- 
stability testing techniques employed at the Jet Propulsion Laboratory: 
the freeflight technique, and the sting-supported free-oscillation tech- 
nique. The techniques are described with reference to testing a body 
of revolution exhibiting planar motion. Emphasis is put on the data- 
reduction problem which arises when one considers nonlinear aero- 
dynamic coefficients at arbitrary angles of attack. An approach to a 
general nonlinear case is outlined, and a detailed analysis is carried 
out for a cubic pitching-moment curve and arbitrary lift and drag 
curves. In addition, the advantages and disadvantages of utilizing the 
alternate testing methods are discussed. Possible extensions of both tech- 
niques into additional dynamic-stability testing areas are mentioned. 

1. INTRODUCTION 

An atmospheric entry or re-entry vehicle is likely to 
be initially misaligned with respect to its trajectory and, 
therefore, it will oscillate in an angle of attack along its 
flight path. This angular motion superimposed over the 
mean trajectory is of concern for the following reasons: 
(1) it affects the loads and load distribution to which the 
vehicle will be subjected; (2) it determines the areas of 
the vehicle surface which will experience the most severe 
heating conditions; and (3) it can affect the ability of the 
vehicle to perform in-flight operations such as data trans- 
mission, pre-aimed observations, and parachute deploy- 
ment. When a vehicle first enters a planetary atmosphere, 
it experiences a positive dynamic-pressure gradient, 
thereby producing a continuously increasing aerodynamic 
static-restoring moment and a corresponding convergence 
of oscillation amplitrrde envelope. However, after peak 
deceleration, the dynamic pressure begins decreasing 
and the static-restoring moment becomes progressively 
weaker. If it were the only restoring moment acting, the 
oscillation anp&ude would have to increase in order to 
balance energies. It is at this time during atmospheric 

entry that dynamic stability coefficients may assume an 
important role in the determination of a vehicle’s angle- 
of-attack history. For this reason, the problem of obtain- 
ing wind-tunnel dynamic-stability data becomes a topic 
of considerable interest. 

Two distinct wind-tunnel testing techniques have been 
developed at the Jet Propulsion Laboratory: the free-flight 
technique, and the sting-supported free-oscillation tech- 
nique. The free-flight technique refers to actual unsup- 
ported model flights in the wind tunnel. The method 
incorporates most of the advantages of a ballistic range, 
while eliminating many of the difficulties and limitations. 
In the majority of the free-flight development and testing 
done to this date, attention has been concentrated on a 
planar-motion situation. Recently, work has been initiated 
to extend the technique to a nonplanar case; however, in 
this Report only planar motion will be considered. The 
free-oscillation technique consists of a model mounted 
on a bearing in the wind tunnel, free to oscillate in one 
plane. Thus, this is a single-degree-of-freedom simulation 
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of a free-flying body. Sting effects inherent in this type of 
testing may be assessed through complementary use of the 
free-flight technique. 

tion, and data reduction. The free-oscillation technique is 
described with regard to necessary hardware, data ac- 
quisition, and data reduction. Data reduction for both 
testing methods includes a general solution for both a 
linear restoring moment, and a particular nonlinear mo- 
ment as well as an approach which is applicable to a 
more general nonlinear situation. 

This Report describes in some detail the mechanics of 
both testing techniques. In the free-flight case, topics in- 
clude model design criteria, launch methods, data acquisi- 

II. FREE-FLIGHT TECHNIQUE 

A. Model Design and Construction 
Unlike a ballistic range where the loadings can be as 

high as one-half million g's,* accelerations encountered 
during free-flight runs range from 10 to 100 g's. This 
allows much more latitude in model design and fabrica- 
tion. A particular model size, material, and construction 
type will be dependent upon the kind of data desired and 
the chosen tunnel flow conditions. For example, if drag 
measurements were the test objective, models would be 
built with accelerations low enough to be compatible with 
material strengths and the camera-frame rate, and yet 
high enough to prevent excessive dropping during the 
trajectory across the wind-tunnel viewing window. For 
model design purposes only, the expected model motion 
may be obtained from two approximate equations of 
motion. Appendix A gives these equations, assumptions 
employed in their solutions, and resulting relations which 
are very useful in model-design studies. 

The dynamic stability coefficient obtained from the 
free-flight technique is a function of the total angular 
decay observed during the flight. Therefore, model con- 
struction designed to optimize free-flight motion for 
dynamic-stability purposes would consider the following: 
(1) the number of oscillation cycles viewed during the 
flight, (2) the amplitude decay per cycle, and (3) the abil- 
ity to determine this decay. The number of cycles in a 
given distance is proportional to 

'All symbols are defined in the Nomenclature section of this Report. 

and the decay per cycle is approximately proportional to 

If the mass distribution remains fixed such that d"/m and 
d 2 / Z  remain constant as the model diameter is varied, 
the number of cycles varies inversely with CIS, while the 
decay per cycle varies directly with p%. Since this implies 
that a smaller geometrically-similar model will have 
greater amplitude decay than a larger model, the diam- 
eter should be minimized, subject to the constraints of 
construction capabilities, photographic resolution, and 
ease of launch. Once the diameter and density have been 
fixed, the total'decay for the flight can be maximized 
only by maximizing the model m/Zz. This is accomplished 
by constructing the models of a dense inner core and a 
thin outside peripheral shell. The model weight (and 
therefore acceleration) and center-of-gravity location may 
be controlled by the actual size and positioning of the 
core within the thin shell. 

The particular models tested thus far have ranged from 
0.5- to 1.5-in. D. Both magnesium shells with wall thick- 
ness as low as 0.007 in. and injection molded polystyrene 
models with 0.020-in. wall thickness have been used. 
Lead, because of its density, cost, and malleability, is 
well-suited for the core material. Generally, 6 to 12 cycles 
of motion at frequencies ranging from 60 to 120 cps result. 
Components for typical models are shown in Fig. 1. 
The Table provides representative values of model test 
characteristics for an 0.5-in.-D blunt 10-deg cone and a 
l.O-in.-D sharp 10-deg cone. 
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Configuration 

sharp cone 

rn/rb = 0.6 

Table. Model test characteristics 

a/g. Flight time, 
typical rec Wall material D, in. m, slug5 I, slugs-ft? 

plastic 1 .o 54.9 0.78 x 10.~  0.10 x 10- 14.0 0.1 8 
magnesium 0.5 66.0 0.20 x 1 0 . ~  0.31 X lo-' 37.0 0.12 

e@./& (FROM NOSE)=Q.614 cg./&! (FROM NOSEb0.549 

Fig. 1. Free-flight model construction 

B. launch Methods 

Two actual wind-tunnel free-flight launch methods are 
employed. Thus far in the technique development, an 
attempt has been made to restrict the model to planar 
motion in order to greatly simplify data acquisition and 
reduction. In the ensuing discussions, it will generally be 
assumed that this restriction has been met. 

In the wire-launch method the models are supported 
on a vertical wire at the upstream edge of the wind-tunnel 
viewing window. The wire itself, 0.015- to 0.030-in. D, is 
notched to a depth of 0.005 to 0.010 in. at a point which 
is subsequently located within the model. -A pre-load 
keeps the wire in  tension until it is ruptured at the notch 
by an impulse load, thus releasing the model into a free- 
fight trajectory. The Ivire reaction, when pulling out. 
seldom imparts any vertical or oscillatory motion to the 
model. Complete flexibility in initial angle of attack is 
provided by placing the wire hole through the model at 
the desired release angle. If the wire hole is drilled for- 
ward of the center of gravity, the model will remain 
stationary before rupture of the wire, and the resulting 

-- ltlvtim id! be planar. Figure 2 shows R tunnel installation 
of a wire-release model. The fork arrangement around the 
model base, as shown in this figure, provides support for 
the model during tunnel starting. Small clips on the wire 
above and below the model prevent the model from slid- 
ing on the wire prior to release. 

The second method employs a pneumatic launch gun 
located downstream of the wind-tunnel test section. This 
technique allows trajectories both upstream and down- 
stream across the viewing window, effectively doubling 
the test time per run. The release point is approximately 
10 in. downstream of the trailing edge of the window. 
This insures that the model wake will be free from any 
influence of the projecting mechanism during the view- 
able trajectory. The supporting piston is extended outside 
the tube such that the model release occurs upstream of 
the tube bow shock. A set of pneumatic restraining fingers, 
opened just prior to model launch, provides support for 
the model during tunnel starting. For flat based models 
at angles of attack up to 30 deg, the models are mounted 
on a horizontal wedge fitting within the model base 
(Fig. 1). The wedge provides enough support during 
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Fig. 2. Wire-release installation 
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Fig. 3. launch-tube installation 

launch to insure planar motion. At larger initial angles 
of attack or for configurations with more complicated 
base geometries, a cradle support contoured to the model 
base and side has been used. This technique has not 
proved as reliable as the wedge support. Nonplanar 
motion has resulted about half of the time. Launch 
velocities vary between 20 and 100 ftlsec, depending 
upon the model characteristics and the tunnel flow con- 
ditions. The launch tube chamber supply pressures for 
required launch velocities are determined empirically. 
Figure 3 shows a tunnel installation of a launch-tube con- 
figuration. Further details on launching equipment for 
both techniques may be found in Ref. 1 and 2. 

C. Data Acquisition 

The model motion in the vertical plane (plane parallel 
with the wind-tunnel viewing window surface) is re- 

corded with a high-speed (4000-5000 frames/sec) 35-mm 
half-frame motion-picture camera. Though the motion is 
normally confined to the vertical plane, a second camera 
is used to record the motion in the horizontal plane 
through a small window in the test section ceiling 
(JPL 20-in. supersonic wind tunnel only). At the present 
time, this information is used only in a qualitative sense 
as a verification of planar motion. In a nonplanar case, 
yaw angles may be measured, but  because of the window 
size and location only about 30% of the trajectory is visible. 

Generally, back lighting through the wind-tunnel 
schlieren system, either with or without knife edge is 
used. At  the operating frame rates, normal exposure times 
would be 60 to 80 p sec. In order to eliminate model mo- 
tion during exposure, a short duration, multi-flash strobe 
light source is used. The flash duration can be set as low 
as 1.2 p sec .4 reluctance pickup on the camera sprocket 
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synchronizes strobe flashes with the camera shutter. By 
incorporating the strobe light tube into the wind-tunnel 
schlieren-system light house, flow-visualization pictures 
may be obtained and parallax distortions are eliminated. 

A typical run will result in 400 to loo0 frames of data. 
A high-speed motion-picture sequence is shown in Fig. 4. 
Angular data can be determined from the film with ac- 
curacies ranging from 0.1 to 0.25 deg, depending on the 

Fig. 4. Typical high-speed motion-picture sequence 
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model configuration and size. Figure 5 is a representative 
angle-of-attack history obtained from a test flight. 
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D. D a h  Reduction 
1. Drag Data 

The coordinate system used for the reduction of data 
(Fig. 6) is one which references the model's position to 
the moving gas media; X is the distance between the 

AXIS SYSTEM FIXED WITH ' I RESPECT TO MOVING MEDIA 
I w r  - ,. ~~ 

Fig. 6. Data-reduction coordinate system 

model and the media and is the independent variable 
for the angular and translational equation of motion. 

The instantaneous drag coefficient can be obtained 
directly from the translational equation of motion: 

d2X 
dt' - m - = ?hpV2ACD 

--%a 1 dv -2m d(ZnV) c,=---=pAdx 
pA V d X  

This can be put into a more convenient form by noting 
the following: 

d [ Z n ( l + 2 ) 1  

dx 
- - 
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Therefore, 

A linear fit through a section of the In (1 + V,/V,) vs X 
data yields an effective constant drag coacient for that 
section. Usually there are sufficient data at a range of 
amplitudes, due to the decay, to obtain several effective 
drag points per flight. A representative ln(1 + V,/V,) 
vs X plot is shown in Fig. 7. 

2. Static and Dynamic Stability Data 
The equation of planar angular motion is 

.. 
10 = WpV’AdC, + ?hpV2Ad {Cmq + CmA} 

where C, is a function D f  the angle-of-attack a, and 
{ Cmq + C,;} will be regarded as an effective constant 
coefficient over an oscillation cycle. This coacient will 
vary with the oscillation amplitude. In a practical appli- 
cation of a solution, {Cnlq + C,,} will be assumed con- 
stant over several cycles. Since the oscillation amplitude 

+ 
I-I 

E . 

will in general change in such a situation, a time-averaged 
amplitude will be used as a data correlation parameter. 
The translational equations in the X and Z directions 
are respectively: 

.. .. 
mX = - ?hpVZACD and mZ = ?hpV2AC, mg 

For an axisymmetric body with first-order linear aero- 
dynamic coefficients ( C ,  = Cn,,a; C ,  = CL,a; CD = CD,) 
and small angular excursions, the equation of motion 
reduces to a second-order linear differential equation with 
constant coefficients. The solution to this equation is 

where 

In general ( - pAd /21) C,,,, > > A’ and therefore 

C,, z -2l/pAd R’ 

x, t t  

Fig. 7. Plot used for calculation of drag 
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where Q is the experimental distance frequency of oscil- 
lation in rad/ft. The dynamic stability co&cient may be 
obtained from the amplitude envelope: 

Expanding Cm(a) in a Taylor series about 6, and consid- 
ering only the first order derivatives, 

where 6, is the particular amplitude corresponding to the 
distance X, and 6, is the amplitude at X = X,. 

However, the conditions imposed on this solution are 
in general too restrictive, and more applicable solutions 
must be found. An unrestricted integral equation for de- 
termining the dynamic stability coacient from energy 
considerations has been developed in Ref. 3: 

The lift and drag coefficients will be assumed to be func- 
tions of 6 directly instead of a. This is equivalent to say- 
ing the second terms in their Taylor series expansions are 
quite small. Since, in general, lift and drag have second- 
order effects on the amplitude decay, small errors in their 
contributions will lead to a negligible error in the final 
solution for {Cmq + C,,}. Furthermore, since the decay 
is very small (86 < < O 0 )  in all terms except for the term 
containing the prime moment function C ,  (6) (that is, in 
all the second-order terms), the lower limit of integration 
- ( O 0  - 86) will be replaced by -6,. Again, the error 
introduced by this approximation will be a small part of 
a second-order effect. Introducing these approximations 
into Eq. (2) results in a working form of the energy inte- 
gral equation: 

where 6, is the initial amplitude, -(6" - 86) is the ampli- 
tude after one half cycle, C ,  and CD are fundons of a, 

and {Cmq + c,;} is an effective constant coefficient. Using 
a small angle assumption and ignoring gravity 

In solving particular problems with this energy integral 
equation, it will be assumed that the body's angular ve- 
locity 6' is a function primarily of the pitching moment, 
and that other contributors can be neglected. In the linear 
case, this is equivalent to the condition A' < < -pAd/21 
X Cma. In most physically probable situations this as- 
sumption proves excellent. In the rare case where the 
decay factor h has a significant &ect on the angular 
velocity, a simple iteration could be used to obtain 8'. In 
general then, an approximation for 6' may be obtained by 
considering the equation of motion with distance as the 
independent variable, ignoring all terms except the pitch- 

----- d Z d X 1  (a-  8 )  =-= -z dX dt V - -" V 

From the lift equation, 

- *  dZ d(Z'V) pVZA ing moment z=-=- V=- CL (4 d t d x  2m 

Theref ore, 

8" = &c, (6) + 6 ' K  PA C" 
21 

9 
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multiplying both sides by e', and ignoring the last term 

O'd0' d0 
dX 21 dX 
- = @ cm ( e )  - 

Integrating from 0,) to 0, and noting that at Oil, 8' = 0, 
we have 

where the sign of 0' is dependent upon the sign of 0,. 
Using this expression for the angular velocity, a solution 
for the dynamic stability coefficient of an axisymmetric 
body with general lift and drag curves at any oscillation 
amplitude will be developed for a linear pitching moment 
case. In addition, characteristics of the nonlinear problem 
and a specific nonlinear pitching-moment curve will be 
discussed. 

a. Linear pitching moment. Cn, (a) = C,,,a 

Arbitrary lift and drag curves may be approximated to 
any desired accuracy by power series in 0. Since the body 
is axisymmetric, the two series will be odd and even, 
respectively. 

m 

i = l  
cL(q = cLae + b p i + '  

Inserting these series in the energy equation (Eq. 3) 
and performing the indicated integrations yield the fol- 
lowing solution for a half cycle: 

Notice that the above solution is equivalent to the solu- 
tion of the linear differential equation when the bi and 
ci  are set equal to 0 and the excellent approximation 
- 1n (az/a0) = 60/0, is employed. By extension then, this 
solution provides a correction to the linear solution which 
will account for nonlinear lift and drag over an arbitrary 
number of cycles. However, the corrections are based on 
an amplitude value which changes during the flight due 
to the decay. It is therefore necessary to define a new 
amplitude value to be used for calculations and data 
correlation. The mean square resultant ange-of-attack 6' 
is defiried as 

8 2  = lx ddX / x 

For a constant decay which is small in comparison with 
the oscillatory frequency 

The mean amplitude for the flight E,, will be defined in 
terms of 6': 

In the limit as the decay approaches zero, = aO. In the 
same manner that 6' best represents the mean square 
angle-of-attack, c0 best represents the mean amplitude. 

The useable solution for the dynamic stability co&- 
cient for a body with a linear pitching moment is then 

4m 1 
pA X - X o z n ( 2 )  

- --- 

" 1  ' 2 j - 1  
2 ( i  + 1)( ,?+.8"1] 

c , , + 2 5  . ( j = l  I + '  n- 2i zi - 1 ) b i & ' ] -  [ C D ~  $-2 
I =  i = l  

md' -4m 66' 
{Gnq + C,,} - = - - - 

4 p~ eo 

1 0  
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As an example of the lift and drag correction factors, 
if lift and drag are given by the expressions 

the lift and drag terms in the solution are, respectively, 

The applicability of this solution for several lift and 
drag curves has been verified with an exact computer 
solution of the equations of motion. The analytical forms 
of the aerodynamic coefficients were entered into the pro- 
gram and the resulting motion computed. {CnIg + C,,,} 
was then calculated with the above solution using the 
computer decay. The deviation between the result and 
the input value of {C.,,  + C n I g }  was less than 1% in all 
cases. Figure 8 shows a representative envelope calcu- 
lated with this solution compared to an envelope cal- 
culated with the six-degree-of-freedom program. 

b. Nonlinear pitching moments. Nonlinear pitching mo- 
ments which can be represented by a power series or 
trigonometric functions add a substantial complication 
to the problem. A first integration yielding an expression 
for 0' may still be performed. However, further integra- 
tions such as those involved in Eq. (3) generally lead to 
elliptic integrals of the first and second types. Therefore, 
a closed form solution for a general pitching moment can- 
not be obtained. Given a body exhibiting a particular 
nonlinear moment, two possible approaches to the data 
reduction problem are (1) define an effective constant 
pitching moment slope Cmaeetr which will give the same 
distance period of oscillation over a quarter cycle as does 
the nonlinear moment, and use the linear solution with 
this effective coefEcient; CmQerr will, of course, vary 
with oscillation amplitude; and (2) actually set up and 
integrate the elliptic integrals involved using the non- 
linear moment. The second choice may involve a great 
deal of work and, in some cases, might not even be 
possible. Furthermore, the solution will not be in a form 
which is easily useable for parametric studies. However, 
in the first approach, though the distance oscillation 
period is matched, 0 upon which the static aerodynamics 
are dependent and 0' upon which the damping moment 
is dependent may vary greatly over a quarter oscillation 
cycle between the linear and the nonlinear cases. Thus, 
a significant loss of accuracy might occur if the first ap- 
proach is employed. In general then, the characteristics 

of any particular nonlinear moment must be examined, 
and perhaps the first, the second, or some combination of 
these two approaches may be employed. 

For illustrative purposes, a pitching moment of the form 
Cm (e) = C,,a + 2rma3 where rnl > 0 (destabilizing) will 
be analyzed. As a basis of analysis, the equation of motion 
neglecting all terms except the pitching moment will be 
soIved completely for both a linear and a cubic pitching 
moment. By equating distance oscillation frequencies over 
a quarter cycle, the effect of the nonlinear moment on 
0 and 0' may be determined. This will lead the way to 
a solution for the complete nonlinear equation and to a 
derivation of a correction factor which will account for 
the effects of the nonlinear moment when applied to the 
linear solution. The equation to be solved is then, 

le'' = %pAd C,, ( e )  

Linear case. C,, (0) = C,,,o,ffO 

If the body started at an initial angle -eo, the sign of 8' 
will be positive over the first half cycle. Defining the dis- 
tance X = 0 when the model passes through 0 = 0, a 
second integration yields distance as a function of 0 over 
a quarter cycle: 

Cubic case. C,,(O) = Cp)ldO + 2rl,,0:~ (see Fig. 9) 

11 
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Note that if the body is statically stable at B o  > 0, then 
c,,e0 + 2rmO; < 0 and therefore the following three in- 
equalities hold: 

Employing the substitutions k' = G/q' < 1 and 
+ = sin-' 6/19", 

- 

Let - q' = (C~lI,/~nl) + 0;. Then q' > 0; and 

where F ( k , + )  is the Legendre canonical form of an 
elliptic integral of the first kind (Ref. 4). Figure 10 relates 
k' to C,,/rm and O,,. An expression for an effective linear 

x = -  ( 1 )" ( - 21 )" 1'" de 
Tm pAd (e' - e$)*,$ ( 0 2  - q')l,$ 
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Fig. 10. k' vs e,, for various values of parameter c,,/rm 
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pitching moment slope which yields the same distance 
period of oscillation over a quarter cycle as does the non- 
linear moment may now be derived by equating the ex- 
pressions for Xl  and X,. 

of experimental data. C,, may be calculated for several 
oscillation amplitudes (as many as possible) from the ex- 
perimental frequency using the linear solution. Then CmU 
and rnt may be obtained through a least squares curve fit 
of the C ,  vs 8, data. A derivation of the least-squares 
equations for this fit are presented in Appendix B. 

aeff 

aeff 

Assuming that locally 6 ,  is a slight perturbation of 01, 
the following approximate angle ratio can be written: 

sin 6'1 

sin ( 0 1  2) - - 
(Ga + rtlt03 ~'14 O l  sinQX1 

[ F  ( k ,  ~ / 3 ) ] '  0. sin ax,, 
_-- - c,,, = 

"elf 

Figure 11 shows Cijlacff as a function of d,, calculated from 
several hypothetical cubic pitching-moment curves. Since 
the oscillation frequency is a function primarily of the 
pitching moment, Eq. (6) provides a method to obtain 

where 

- _  X n  - ( CmaPff ) ' ' F ( ; + )  
the coefficients of a cubic pitching moment from a set XI  Cmu + rn~o; 

80, deg 

vs O , ,  for various values of parameter Cnba/rnL 
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and substituting for Crnmeff, Similarly the ratio O ; / O ;  may be formed: 

and + = sin-' O / O , , ,  it can be seen that the distance ratio 
and angle ratio are both functions of only 60, 0 and 
Crn,/rrn, and independent of the actual magnitude of the 
cubic coefficients. O,/On and X , / X z  are plotted in Figs. 12 
and 13 for various values of the ratio Cm,/rm. 

0 IO 20 30 40 50 60 70 80 90 IOC 

948 dep 

Fig. 12. O r / 0 , ,  vs 0,  for various values of parameter Crn,/r,,, 
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Again, this is independent of the absolute values of 
CntB and r,, but is a function of 8, B o ,  and Cmol/rm. 
Figures 14 and 15 are parametric representations of 
this ratio. 

Perhaps of more interest than the 8' ratio is the ratio 
of the integrals of the angular velocities over a half 
oscillation cycle since these integrals represent weighing 
factors with regard to the effects of {Cmq + CmA}. 

(-Cmoeff)% le"(& - OZ)%dO 
- -ec) 

[:" e; de 

e:, de (r,)% le: (e' - 8:)s ( 0 2  + /I: r ,  

- 

+ 81)1' de 

The denominator involves elliptic integrals of both the 
first and the second types. The following equality can 
be shown: 

x [ - (%+ &)]%[(l + k ' ) E ( k , x / 2 )  - i 2 F ( k , x / 2 ) ]  

1.10 

I .os 

1 . 0 0  

0.95 

where again 

- 
k2 = 1 - k z  , and F and E are the Legendre canonical 
forms of elliptic integrals of the first and second kinds, 
respectively. The ratio now becomes, 

1 
[( 1 + k') E (k, x / 2 )  - F F (k ,  x / 2 ) ]  X 

- ?4 k' x2/4 1 
- 

F (k, x / 2 )  [( 1 + k') E ( k ,  x / 2 )  - /P F ( k ,  x / 2 ) ]  

3 

Fig. 14. e:/@', vs 6 for various values of parameter Cnk,/r"l 
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This ratio is plotted vs eo for several values of Cma/rm in 
Fig. 16 and vs k? in Fig. 17. 

These ratios actually represent the errors that would 
result if a body with a cubic pitching moment were 
analyzed with an effective linear moment. The difEerence 
between the nonlinear and linear angles would have to 
be used in conjunction with curves of the lift and drag 
c d c i e n t s .  The error in this dissipative term, 

is available directly from Fig. 16. 

With this development it is now possible to formulate A* 

Fig. 17. JO;dtI/Je;de vs kZ an approach toward a solution for the damping coefficient. 
Figures 12 and 17, used in conjunction with the aero- 
dynamics of the shape in question, would yield an assess- 
ment of errors introduced by employing a linear effective 
approximation. Each particular situation should be con- 
sidered separately. However, a general practical approach 
would be to use linear effective aerodynamics for the 

second order terms, lift and drag, and the actual cubic 
pitching moment in the remaining terms. With this ap- 
proach, integrating Eq. (3) and ignoring higher order 
terms of 68, the following solution results: 

This last equation may be put into a more useful form by writing the first term 
as a product of a linear solution term and the ratio of a nonlinear to linear term: 



JPL TECHNICAL REPORT NO. 32-878 

where 

3/2j;? k 2  F ( k ,  .7i/2) 
[(l + k') Edk,  ~ / 2 )  - F (k, ~ / 2 ) ]  

The correction ratio R is plotted vs B o  for several values 
of C,Lo/r,,, in Fig. 18 and k' in Fig. 19. Inserting this in 
the damping coefficient solution and extending over an 
arbitrary number of cycles in a manner similar to the 
linear case yield Eq. 7: 

The applicability of this solution has also been checked 
with a six-degree-of-freedom program. Deviations be- 
tween input and resultant values of { C,, + C,,,} were 
less than 3% in all .cases, and less than 1% for the lower 
values of k'. Figure 20 shows envelope histories cal- 
culated with this solution as compared to envelopes 
calculated with the six-degree-of-freedom program for 
Cn&, = - 20. 
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Fig. 18. Correction factor R vs O,, for various values of parameter Ce,N/r,It 
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The free-flight technique has many capabilities for a 
large variety of wind-tunnel uses. Applications to dynamic 
stability testing alone show significant advantages over 
other testing techniques. The most prominent, of course, 
remains the various ramifications of support free data. The 
following discussion mentions some of the major benefits 
derived from this testing technique. 

It is generally recognized that the presence of a sting, 
no matter how small, is likely to affect the base pressure 
and base heating of the test configuration. In turn, many 

aerodynamic measurements, including dynamic stability, 
may be materially affected by the base flow conditions. 
However, usual evaluation from captive type tests tends 
towards the assumption that support interference is 
negligible. The free-flight technique offers a method to 
obtain support-free data which may be used to check 
the validity of this assumption. 

In addition, the free-flight technique allows the exten- 
sion of wind-tunnel dynamic stability testing into' areas 
difficult or impossible to match with other techniques. 
Complete flexibility of initial angle of attack as well as 
the* possibility of analyzing nonplanar motion are avail- 
able. Experiments may be conducted iq a high-oscillation 
frequency regime which cannot be matched in a captive 
free-oscillation test. The relatively low model accelera- 
tions allows great flexibility in the variation of such 
parameters as model size, center of gravity, and moment 
of inertia. Certainly, a much more meaningful base con- 
figuration study could be performed with this method 
than with any other technique. 

From a qualitative point of view, the technique allows 
the experimenter an opportunity to see actual flight 
motion and corresponding stability trends. A rather 
important and useful by-product is the complete flow 
visualization record of the flight from the schlieren 
motion pictures. 

The major limitation of the technique is the data 
reduction problem. Film reading is a costly and time 
consuming process, and, in general, is the primary limit 
on the amount of data to be reduced. The possibility of 
using accelerometers and a telemetry package to recreate 
the model motion could eliminate this problem. It would 
be feasible, under such a data acquisition technique, to 
have a completely automatic collecting and reduction 
system which would greatly reduce both time and cost. 
This, together with the extension to nonplanar motion, 
would seem to be the next step in technique development. 
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Fig. 20. Comparison of cubic-solution envelope to six-degree-of-freedom envelope 
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111. FREE-OSCILLATION TECHNIQUE 

A. The Gas Bearing 
The models are mounted in the wind tunnel at their 

center of gravity on a sting-supported low-friction gas 
bearing. High purity gaseous nitrogen at 200 psi is used 
as a lubricant. At this pressure, the bearing will support 
up to 55 lb of radial load. Exhaust gases are channeled 
to a point of release on the sting about 2 ft downstream 
of the model base. The bearing is 1-in. D, 2-in. long, and 
has a radial gap approximately 0.0005 in. (see Fig. 21) 
The maximum model angle of attack is limited by the 
sting and the model base to anywhere from 20 deg 
(sharp cone) to 45 deg (very blunt cone). The model 
may be remotely pitched to and released from the 
desired initial angle of attack. 

The operation of the bearing is normally checked with 
a thin shell, low moment of inertia calibratior, sphere 
prior to the recording of any data. The sphere. mounted 
on a diameter, contains an offset mass to provide a 
restoring moment. It is pitched to its maximum angular 
excursion, released, and allowed to oscillate until damped 
by the bearing friction and the aerodynamics. Since the 
aerodynamic effects are small as the sphere oscillates 
about a diameter, this damping history provides a quali- 
tative measure for the tare damping. Tunnel air flow 
provides loads of the same magnitude as those experi- 
enced by the test models, and yet the low moment of 

\" 

Fig. 21. The sting-supported gas bearing 

inertia sphere maintains oscillation frequencies similar 
to that of a model. This is in contrast to a nonaerodynamic 
dead load calibration which would result in compara- 
tively very low frequencies. The calibration sphere 
mounted on the bearing is shown in Fig. 22. 

B. Data Acquisition 
The data are collected through a system which uses 

an Optron Tracker: a passive optical electronic device 
which is designed to follow the motion of an object 
without physical contact. A cutaway schematic is shown 
in Fig. 2.3. The tracker requires a target having a sharp 
delineation in brightness to provide contrast. This target 
is optically focused on a photo-cathode which emits an 
electron image toward and through an aperture into a 
photo-multiplier section. The photo-multiplier output is 
coupled to a differential amplifier which compares the 
oatput signai io a iefeicxce signal established with the 
sharp line of contrast centered on the aperture. Any 
deviation from this reference causes the differential 
amplifier output to become unbalanced and send a 
correction voltage to a deflection yoke. The deflection 
yoke re-positions the electron beam so it is again centered 
on the aperture, thus forming a complete servo loop. 
'4 readout voltage may be sampled from the differential 
amplifier output. If the target is not on the model center 
of rotation, angular deflection of the model will yieid 
vertical displacement of the target, and the Optron 
Tracker output will be a function of model angle of 
attack. At 2-ft working distance, the tracker has a maxi- 
mum displacement range of 0.8 in. with a resolution of 
0.001 in. and a rise time of 50 psec. The instrument is 
calibrated statically by pitching the model to a known 
angle of attack and recording the output. The relation- 
ship between voltage output and model angle of attack 
is quite linear between -30 and +30 deg, thus minimiz- 
ing the number of points necessary during a calibration. 

The available output from the Optron Tracker is then 
a continuous analog record of the model angle of attack. 
All that is necessary in order to obtain dynamic stabilie 
is a record of the oscillation amplitude and frequency. 
Therefore, it is desirable to sample the Optron output 
only around peak angle-of-attack areas. This is accom- 
plished as follows: zero troltage output, equivalent to 
zero angle of attack, is sensed electronically. Using this. 

'Slanufactured by the Optron Corporation. Smta B.1rbar.i. Calif. 
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Fig. 22. Calibration sphere installation 
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Fig. 23. Cutaway schematic of optron tracker 
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the period for each half oscillation cycle is measured 
and used to predict the occurrence of a peak two half 
cycles later (two to account for oscillation asymmetries). 
A sample of the Optron output is recorded 4.5 msec 
prior to the predicted peak time and every 0.5 msec 
thereafter until 4.5 msec after the predicted time (19 
records). In general, this method will catch the peak, and 
in the cases where it does not, the 19 recorded points 
provide enough information to extrapolate the peak value. 
Applying a calibration and summing the half oscillation 
cycle times yield the raw data, a time vs oscillation 
amplitude history The .number of amplitude points per 
run varies between 30 for a high-damping, high-tunnel 
density run to as many as 1000 in the other extremes. 
Generally 3 or more runs are taken at each data point 
in order to provide a consistency check on both the 
equipment operation and the results. The angular posi- 
tion of the model can be determined to better than 
0.2 deg. Part of this tolerance is due to difficulties in 
determining the actual angle of attack of the model 
during the calibration. The decay itself, upon which the 
dynamic stability coefficient is dependent, can be deter- 
mined to about 0.1 deg. Figure 24 shows an amplitude vs 
time plot obtained through the free-oscillation techniques. 

Because of the physical size of the bearing, the free 
oscillation models are necessarily large (4- to 5.25-in. D) 
in comparison to those used in the free-flight technique. 

SHARP IO-deg HALF-ANGLE CONE 

Ma = 6.0 

Cg, 63.36% I AFT OF NOSE 16 

I \ I FREE OSCILLATION I 
12 

e 0 
U 

U 
I; 

8 

4 

0 
0 4 8 12 16 20 

TIME, so(: 

Fig. 24. Free-oscillation amplitude vs time 

This, in turn, leads to substantial loads on the model and 
corresponding sting deflections as the model oscillates. 
In order to determine the effects, if any, of this sting 
motion on the model oscillatory history, the sting was 
instrumented with a strain gage bridge which provided 
a method to determine both loads and sting deflections. 
Output from the strain gage bridge is recorded simul- 
taneously with the peak angular data, and in addition, 
recorded continuously with an oscillograph. Figure 25 
presents an oscillograph trace showing the Optron 
Tracker output, the strain gage bridge output, and the 
triggering pulse corresponding to the initial scans of the 
19 records around each peak. Notice that in this trace, 
no phase shift or higher harmonic motion is visible. 

C. Data Reduction 

a body oscillating about a point is 
The single-degree-of-freedom equation of motion for 

Two alternative cases for axisymmetric bodies will be 
considered: a linear pitching moment, and a cubic pitch- 
ing moment. Because of the angle-of-attack limitations 
imposed by the hardware itself, one of these moment 
types generally provides a good approximation for most 
test configurations. In all instances {Cmq + C,,} will be 
an effective coefficient, assumed to remain constant over 
one oscillation cycle. The approach used will be parallel 
to that used in the free-flight case with the problem 
simplified in two respects. These are both due to the 
translational restraints imposed on the model and result 
in the velocity remaining constant and the condition 
a = 8.  Neither lift nor drag terms will appear in the 
equations or solutions. Because of the similarity to the 
free-flight technique, derivations here will be brief, with 
many steps omitted. 

1. Linear Pitching Moment (C, = Cmaa) 

Again the solution is based on the premise that the 
pitching moment is the prime contributor to angular 
velocity. The solutions for the frequency and the envelope 
angle are 
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Fig. 25. Oscillograph trace of optron and strain gage output 

The corresponding solutions for the aerodynamic coeffi- 
cients are 

2. Cubic Pitching moment (C, = CmUu i %,a3, r, > 0)  

The equation of motion becomes 

Employing the assumption that the pitching velocity is 
a function of primarily the pitching moment, the follow- 
ing result is obtained: 

An effective pitching moment slope which equates the 
oscillation frequencies between the linear and nonlinear 
case may be calculated from the experimental frequency 
using the linear solution. C,,, and r ,  are then obtained 
from a least-squares fit to the equation 

where 

Using the above expression for (I in the equation of motion 
yields the solution for {C,,,, + CntA}:  
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As in the free flight case, this may be written as the 
linea4 solution times a correction factor: 

where 

This is the same ratio employed in the free-flight reduc- 
tion with e,, replaced by a0. Even greater accuracy could 
be expected in the free-oscillation case than for free- 
flight reduction as there are no approximating assump- 
tions on lift and drag terms. 

D. Dynamic-Stability Testing Capabilities 

The free-oscillation technique d o w s  the acquisition 
of large amounts of highly accurate data in relatively 
short periods of time. In contrast to the free-flight tech- 
nique, data acquisition and reduction are completely 
automatic from the wind-tunnel test to reduced data 
plots. This allows complete parametric studies of a 

particular configuration within the capabilities of the 
wind tunnels. Through complementary use of the free- 
fIight technique, a good assessment of sting effects is 
available for data verification. Thus, the combination of 
the two techniques comprise a powerful experimental 
tool. 

Two major difEcukes can arise in the employment of 
this techniqme. They are bearing friction and angle-of- 
attack limitations. The first problem may be minimized 
by the construction quality of the bearing. Damping due 
to bearing friction for the sting-supported air bearing de- 
scribed in this Report may be neglected in most cases. It 
represents less than 0.1% of the damping of a sharp 10-deg 
cone. The second problem could be alleviated by using 
a transverse supported bearing which would allow 360 
deg of rotation. However, the problem of support inter- 
ference becomes more acute in this case. 

It is possible to design a spherical gas bearing which 
would allow 3 deg of angular freedom, up to some limited 
total angle of attack. Thus, a free-oscillation technique 
could also be extended to a nonplanar situation. Pre- 
liminary study of such a system has been initiated. 

IV. SUMMARY 

TWO dynamic-stability testing techniques have been 
described in this Report. The content is complete enough 
to serve as a handbook for a test program, from planning 
and design through data reduction. Special emphasis is 
placed on the problem of data reduction for an axisym- 
metric body in planar motion. An energy integral 
approach, developed in Ref. 3, is applied to handle the 
nonlinear problems. Complete details are worked out 
for a specific set of nonlinear aerodynamics: a cubic 
pitching moment, and arbitrary lift and drag curves. This 
choice was made because of its wide range of applicability 

to practical cases. The final results are presented in a 
correction factor form, which may be applied to the 
linear solution in order to account for the effects of the 
nonlinear restoring moment. By handling the solution in 
this fashion, it becomes particularly easy to apply it to 
a set of test results. 

In addition, the strengths and the weaknesses of the 
two techniques are discussed. It is pointed out that they 
serve each other in a complementary fashion, and together 
form a very strong experimental tool. 
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APPENDIX A 

Approximate Equations of Motion 

For free-flight model design purposes only, the follow- 
ing approximate equations may be used to determine 
expected model motion. In solving the equations, the 
following assumptions will be made: constant dynamic 

2. Time to travel distance S 

( q f g A )  
t =  - 

3. Model velocity at distance S pressure, small angular excursions, linear pitching 
moment, and single-degree-of-freedom angular oscilla- 
tions about a point. The equations are: 

.. 
mX - CDq,  A = 0 4. Number ot oscillation cycles in distance S 

N + - S - -  -cma 2 1  ">" 
5. Oscillation frequency 

Solutions yield the following useful relationships: = J- ( - " " p " q m ) ' $  

6. Decay in oscillation amplitude 

27r 
1. Model Acceleration 

APPENDIX B 

Derivation of least-Squares Equations for 
Nonlinear Pitching Moment Fit 

Given a tabulated set (n  points) of data, ( C ,  ) .  and and F is the Legendre canonical form of an elliptic 
integral of the first kind, the problem is to find a C,,,, 
and Tal such that the following quantity is minimized: 

"eft a 
B , , ; ,  and the desired functional form 

where The method employed is the Gauss method which con- 
sists essentially of linearizing the problem with truncated 
Taylor series, using initial estimates of the parameters 
in the linear expansion to obtain new estimates, and 
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repeating this process until some convergence criterion 
is satisfied. 

Therefore, suppose initial estimates Cm and r,,,,, are 
given. Expanding Eq. (B-1) in a first order Taylor series 
about this point, 

a0 

where 

- (rmoe;)lh dF (k, =/2) 
(cwlU,  - rwzOe;)s 

dF (k, x / 2 )  - E (k, x / 2 )  - (1 - k") F (k, a/2)  - 
dk k ( 1  - k') 

and E is the Legendre Canonical Form of an elliptic 
integral of the second kind. 

This is now a linear least-squares problem with ACmaerr 
as the independent variables, and ACma and Arm as the 
parameters to be estimated. The standard linear normal 
equations are 

aGi aG; aGi 
I = I  (%-y + Arm (qc) 

Solving these 2 linear equations for the two unknowns 
A Cma and A r ,  gives values to modify Cma,, and rmt,: 

These improved estimates are used to repeat the process 
until, after 9 iterations, the values of A Cma and A rm are 
less than some predetermined convergence criterion. 
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NOMENCLATURE 

model reference area, sd2/4 

acceleration along model center line 
(see Table 1) 

drag coefficient, drag force/q,A; 
CD0 = drag coefficient at zero angle of 
attack 

lift coefficient, lift force/q,A; 
CLa = lift coefficient slope per radian 

pitching moment coefficient, pitching 
moment/q,Ad; Cmm = pitching 
moment coefficient slope per radian 

dynamic-stability coefficient, assumed 
constant over an oscillation cycle: 

model diameter, reference length 

oscillation frequency, cps 

acceleration due to gravity 

modulus of elliptic integrals 

complementary modulus 

model moment of inertia about a 
transverse axis at center of gravity 

model mass 

free-stream dynamic pressure 

base radius of model (see Table 1) 

cubic term in nonlinear pitching 
moment 

nose radius of model (see Table 1) 

t time 

X model position relative to media 
along tunnel centerline 

model velocity relative to media 

model velocity relative to inertial system 

V 
V, 
V, free-stream velocity 

2 

a model angle of attack 

model position in vertical direction 

a. initial oscillation amplitude 

zi0 effective oscillation amplitude 

8 2  mean-square angle of attack 

Sa, SO amplitude decay 

0 angle between free-stream velocity 
vector and model centerline 

p gas density 

oscillation frequency, radians per 
distance X traveled 

derivative with respect to time 

derivative with respect to distance 
( - ) 
(’) 

SUBSCRIPTS 

eff effective constant 

1 linear 

n nonlinear 

0 

t condition at time t 

x conditions at distance X 

M free-stream conditions 

condition at time or distance 0 
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